
M17 – Compliance with the Metadata Quality

Assurance (MQA) tool for datasets

Milestone Lead UNITUS

Milestone due date 2024/07/31

Status FINAL

Version V1.0

Project SEBASTIEN

Agreement: INEA/CEF/ICT/A2020/2373580 Action: 2020-IT-IA-0234

DOCUMENT INFORMATION

Title Milestone 17

Agreement INEA/CEF/ICT/A2020/2373580

Action 2020-IT-IA-0234

Creator UNITUS

Milestone Description
Compliance with the Metadata Quality Assurance

(MQA) tool for datasets

Means of verification

Relevant datasets (including metadata) resulting

from the action are published on a national portal

or catalogue that is harvested by the European

Data Portal, under which the MQA can be

performed; confirmation in the final report

submitted to HaDEA

Contributors
Marco Milanesi (UNITUS), Gabriel Cerveira (CMCC),

Alessandro D’Anca (CMCC)

Requested deadline M31

Reviewer Giuseppe Trotta (CINECA)

2

Table of content

1. Introduction...4

2. Metadata Quality Assurance... 4
3. DCAT-AP in SEBASTIEN datasets.. 6
4. SHACL validation results.. 14
5. DCAT-AP IT conversion... 15
6. Conclusions..19

3

1. Introduction
This document describes the procedures and techniques used within the SEBASTIEN project in

order to ensure the MQA compliance with the European Data Portal of the datasets produced and

their dissemination through a national portal (in particular the Italian open data portal) that is

harvested by the European Data Portal.

In particular, Chapter 2 describes the characteristics required to guarantee MQA compliance with

the European Data Portal while Chapter 3 presents the implementation features of the solution

identified to guarantee compliance with the DCAT-AP API specifications. Chapter 4 reports the

results obtained through the validation of the datasets with the SHACL validator made available by

the European Data Portal. Finally, Chapter 5 presents information on the development required to

guarantee the on-boarding of the datasets on the Italian open data portal through compliance with

the DCAT-AP IT API.

2. Metadata Quality Assurance

In an effort to improve the quality of open data and to help data providers understand the strength

and weaknesses of their metadata, the European Data Portal implemented a process called

Metadata Quality Assessment (MQA). This tool periodically calculates a score to determine the

quality of the information about the datasets published through the portal’s harvester. The

methodology applied for the score calculation is derived from the four dimensions of the FAIR

principles (https://www.go-fair.org/fair-principles/) and from the DCAT-AP

(https://www.w3.org/TR/vocab-dcat/) specification.

Since most of the data online today is produced, found and consumed through automated

processes, the portal’s MQA focuses on evaluating the quality through this perspective; this is

where the dimensions of the FAIR principles (Wilkinson et al., 2016) become useful. The four FAIR

dimensions are:

● Findability, which says the data should be easy to find, and therefore it should be

machine-readable;

● Accessibility, which says there should be clear information on how the data should be

accessed;

● Interoperability, which says the data should be operable through different applications and

workflows;

● Reusability, which says the data should be easily replicable in different settings.

4

https://www.go-fair.org/fair-principles/
https://www.w3.org/TR/vocab-dcat/

The most fundamental layer of the MQA is the metadata’s compliance to the DCAT-AP

specification. This is an application profile for data portals in Europe, derived from the Data

Catalogue vocabulary (DCAT). The DCAT-AP was created with the goal of making data searchable

and usable across sectors and to allow interoperability with applications that use other established

vocabularies.

The combination of the DCAT-AP with the FAIR principles’ dimensions allowed the European Data

Portal to determine the criteria for the scoring in the MQA process, which uses DCAT-AP fields that

correspond to the FAIR principles, as can be seen in Table 1.

FAIR Dimension DCAT-AP Field Weight

Findability dcat:keyword 30

Findability dcat:theme 30

Findability dct:spatial 20

Findability dct:temporal 20

Accessibility dcat:accessURL 50

Accessibility dcat:downloadURL 50

Interoperability dct:format 50

Interoperability dcat:mediaType 20

Interoperability DCAT-AP compliance 30

Reusability dct:license 30

Reusability dct:accessRights 15

5

Reusability dcat:contactPoint 20

Reusability dct:publisher 10

Table 1: Relation of fields considered for the MQA score, along with the related FAIR dimension and the respective

weight of the field on the overall score.

In order to be compliant with the DCAT-AP profile, there are only two mandatory fields: dct:title

and dct:description. These fields are not included in the MQA score, since without them the

dataset couldn’t be published in the portal. The fields in the above table are non-mandatory

according to the DCAT-AP, but are considered highly recommended by the European Data Portal in

order to guarantee the high quality of the published metadata. The complete specification for the

DCAT-AP can be found here: https://semiceu.github.io/DCAT-AP/releases/3.0.0/.

3. DCAT-AP in SEBASTIEN datasets

In the scope of the SEBASTIEN project, the metadata for the generated datasets was originally

provided through a REST API, which provides this metadata in the JSON format. The original

metadata can be fetched either as a list comprising information about all the datasets

(https://sebastien-datalake.cmcc.it/api/v2/datasets) or as a single JSON for a specific dataset

(https://sebastien-datalake.cmcc.it/api/v2/datasets/{dataset}). Table 2 shows a list of the dataset

IDs, as defined in the SEBASTIEN API, which were converted for harvesting by the European Data

Portal.

ID Description

blue-tongue Blue Tongue monthly data

iot-animal IoT Animal data

pasture Pasture total quantity and dry substance derived from
Remote Sensing Indices

pi Production Indices derived from MISTRAL COSMO-2I
weather forecast data

pi-long-term Production Indices derived from VHR-PRO future

6

https://semiceu.github.io/DCAT-AP/releases/3.0.0/
https://sebastien-datalake.cmcc.it/api/v2/datasets
https://sebastien-datalake.cmcc.it/api/v2/datasets/%7bdataset%7d

scenario

thi Thermohygrometric Indices derived from MISTRAL
COSMO-2I weather data

Table 2: List of IDs and description of datasets that were converted.

To reach the goal of publishing the SEBASTIEN metadata to the European Data Portal, several steps

were followed, in particular:

1) Compare the original metadata schema with the DCAT-AP specification, to determine which

fields were missing and which could be converted to a compliant field;

2) From the formats accepted by the European Data Portal, determine which one would be most

effective to adopt;

3) After determining the format, develop the code for the conversion to DCAT-AP;

4) Provide the converted metadata through an API and validate the content for compliance with

DCAT-AP.

On the first step, upon analysing the current schema and fields available on the original JSON

metadata, it was evident that there were fields equivalent to the mandatory DCAT-AP fields and to

some of the recommended fields for MQA improvement, as can be seen in Table 3. After

determining what needed to be done to convert the metadata, two methods of providing it to the

European Data Portal were evaluated: one was providing it through a CKAN (https://ckan.org/)

instance, using an extension for DCAT-AP, and the other, which was chosen, was to provide it in the

RDF (Resource Description Framework)/XML format, through the OAI-PMH (Open Archives

Initiative Protocol for Metadata Harvesting) protocol.

Original SEBASTIEN field DCAT-AP Equivalent

metadata.description dct:description

metadata.contact.name dcat:contactPoint

metadata.label dct:title

metadata.doi dct:identifier

metadata.publication_date dct:issued

7

https://ckan.org/

metadata.id dct:identifier

Table 3: Listing of original SEBASTIEN fields that could be directly translated to equivalent DCAT-AP fields

The OAI-PMH is a method for repository interoperability, it aims to provide a structured way for

data providers (repositories) to expose their metadata and for service providers to harvest it.

OAI-PMH defines a set of six verbs that are invoked via HTTP, facilitating the exchange of metadata

between systems.

For the purposes of integration with the European Data Portal, and following their requirements,

only the ListRecords verb was implemented. This verb allows for the batch harvesting of metadata

records, which is sufficient for providing the SEBASTIEN datasets' metadata to the portal. The

decision to use OAI-PMH was made because it allowed for easy extension of the existing API with

this new capability, minimizing the need for extensive changes to the current infrastructure, such

as setting up a separate data management system like CKAN.

The implementation process involved developing a Python-based solution for converting the

original JSON metadata into the DCAT-AP compliant RDF/XML format. This conversion process

utilized a library specifically designed for working with RDF data, called RDFlib, which ensured

accurate transformation of the metadata fields according to the DCAT-AP specification. The code

for the conversion can be seen below.

from rdflib import Graph, Literal, Namespace, RDF, URIRef, BNode

from rdflib.namespace import DCAT, DCTERMS, FOAF, RDF

import logging

from datetime import datetime

Logging config

logging.basicConfig(level=logging.DEBUG)

Namespaces for DCAT-AP, to be binded to the RDF graph

DCAT = Namespace("http://www.w3.org/ns/dcat#")

DCT = Namespace("http://purl.org/dc/terms/")

FOAF = Namespace("http://xmlns.com/foaf/0.1/")

VCARD = Namespace("http://www.w3.org/2006/vcard/ns#")

EDP = Namespace("https://europeandataportal.eu/voc#")

SPDX = Namespace("http://spdx.org/rdf/terms#")

ADMS = Namespace("http://www.w3.org/ns/adms#")

DQV = Namespace("http://www.w3.org/ns/dqv#")

SKOS = Namespace("http://www.w3.org/2004/02/skos/core#")

SCHEMA = Namespace("http://schema.org/")

Namespace for DCAT-AP IT

DCATAPIT = Namespace("http://dati.gov.it/onto/dcatapit#")

Define classes for DCAT-AP entities (Dataset, Distribution and ContactPoint)

8

class ContactPoint:

def __init__(self, name=None, email=None, webpage=None):

self.name = name

self.email = email

self.webpage = webpage

class Distribution:

def __init__(self, access_url=None, description=None, download_url=None,

media_type=None, format=None, rights=None, license=None,

identifier=None):

self.access_url = access_url

self.description = description

self.download_url = download_url

self.media_type = media_type

self.format = format

self.rights = rights

self.license = license

self.identifier = identifier

class DatasetDCAT:

def __init__(self, uri, title=None, description=None, issued=None,

identifier=None, contact_point=None):

self.uri = uri

self.title = title

self.description = description

self.issued = issued

self.identifier = identifier

self.contact_point = contact_point

self.distributions = []

def add_distribution(self, distribution):

self.distributions.append(distribution)

Build the RDF graph for the dataset

def to_graph(self, g):

dataset = URIRef(self.uri)

g.add((dataset, RDF.type, DCAT.Dataset))

logging.debug(f"Adding to graph {g.identifier}: {dataset} a type

{DCAT.Dataset}")

if self.title:

g.add((dataset, DCT.title, Literal(self.title)))

if self.description:

g.add((dataset, DCT.description, Literal(self.description)))

if self.issued:

g.add((dataset, DCTERMS.issued, Literal(self.issued,

datatype=DCTERMS.W3CDTF)))

if self.identifier:

g.add((dataset, DCTERMS.identifier, Literal(self.identifier)))

9

if self.contact_point:

contact_bnode = BNode()

g.add((dataset, DCAT.contactPoint, contact_bnode))

g.add((contact_bnode, RDF.type, VCARD.Kind))

if self.contact_point.name:

g.add((contact_bnode, VCARD.fn, Literal(self.contact_point.name)))

if self.contact_point.email:

g.add((contact_bnode, VCARD.hasEmail,

URIRef(f"mailto:{self.contact_point.email}")))

if self.contact_point.webpage:

g.add((contact_bnode, VCARD.hasURL,

URIRef(self.contact_point.webpage)))

for dist in self.distributions:

distribution_bnode = BNode()

g.add((dataset, DCAT.distribution, distribution_bnode))

g.add((distribution_bnode, RDF.type, DCAT.Distribution))

if dist.access_url:

g.add((distribution_bnode, DCAT.accessURL, URIRef(dist.access_url)))

if dist.description:

g.add((distribution_bnode, DCTERMS.description,

Literal(dist.description)))

if dist.download_url:

g.add((distribution_bnode, DCAT.downloadURL,

URIRef(dist.download_url)))

if dist.media_type:

g.add((distribution_bnode, DCTERMS.mediaType,

URIRef(dist.media_type)))

if dist.format:

g.add((distribution_bnode, DCTERMS.format, URIRef(dist.format)))

if dist.rights:

rights_bnode = BNode()

g.add((distribution_bnode, DCTERMS.rights, rights_bnode))

g.add((rights_bnode, RDF.type, DCTERMS.RightsStatement))

g.add((rights_bnode, DCTERMS.rights, URIRef(dist.rights)))

if dist.license:

license_bnode = BNode()

g.add((distribution_bnode, DCTERMS.license, license_bnode))

g.add((license_bnode, RDF.type, DCTERMS.LicenseDocument))

g.add((license_bnode, DCTERMS.license, URIRef(dist.license)))

if dist.identifier:

g.add((distribution_bnode, DCTERMS.identifier,

Literal(dist.identifier)))

return g

def convert_to_dcat_ap(data, url):

logging.debug("Starting convert_to_dcat_ap function")

10

g = Graph()

Bind namespaces

g.bind("dcat", DCAT)

g.bind("DCT", DCT)

g.bind("foaf", FOAF)

g.bind("vcard", VCARD)

g.bind("edp", EDP)

g.bind("spdx", SPDX)

g.bind("adms", ADMS)

g.bind("dqv", DQV)

g.bind("skos", SKOS)

g.bind("schema", SCHEMA)

Placeholder URI

dataset_uri = url

if not isinstance(data, list):

data = [data]

for dataset in data:

Check if "dataset" key is present, if it isn’t, wrap the dict in it

if "dataset" not in dataset:

dataset = {"dataset": dataset}

Add the URL to the data

dataset["url"] = url

Create dataset and convert the original field names to DCAT-AP

metadata = DatasetDCAT(

uri=f'{dataset_uri}/{dataset.get("dataset", {}).get("metadata",

{}).get("id")}',

title=dataset.get("dataset", {}).get("metadata", {}).get("label"),

description=dataset.get("dataset", {}).get("metadata",

{}).get("description"),

issued=dataset.get("dataset", {}).get("metadata",

{}).get("publication_date"),

identifier=dataset.get("dataset", {}).get("metadata", {}).get("id"),

)

Create contact point and convert the original field names to DCAT-AP

contact = dataset.get("dataset", {}).get("metadata", {}).get("contact")

contact_point = ContactPoint(

name=contact.get("name"),

email=contact.get("email"),

webpage=contact.get("webpage"),

)

11

metadata.contact_point = contact_point

Create distributions and convert the original field names to DCAT-AP

products = dataset.get("dataset", {}).get("products", {}).get("monthly", {})

distribution = Distribution(

access_url=url,

description=products.get("description"),

)

metadata.add_distribution(distribution)

Add dataset to graph

metadata.to_graph(g)

return g

To serve the converted metadata through the OAI-PMH protocol, a server implementation was

developed using Python, with the pyoai library. This server handles OAI-PMH requests, specifically

the ListRecords verb, and responds with the appropriate DCAT-AP compliant metadata in RDF/XML

format. The server was integrated with FastAPI to provide the necessary HTTP endpoints for the

OAI-PMH protocol. The endpoint for providing the DCAT-AP metadata (i.e.

https://sebastien-datalake.cmcc.it/api/v2/oai/blue-tongue?verb=ListRecords for the blue-tongue

dataset) was set up in such a way that when a GET or POST request is sent to it, it sends a

ListRecords request to the OAI-PMH repository, and fetches the information for the required

dataset. The relevant code for these functionalities is below.

Define OAI-PMH endpoint route

@app.get("/oai/{dataset_id}")

@app.post("/oai/{dataset_id}")

def oai(request: Request, dataset_id: str):

params = dict(request.query_params)

Add dataset_id to the parameters as "set_", which is a parameter from the

OAI-PMH protocol

params['set'] = dataset_id

Making sure it uses the dcat_ap metadata prefix

if 'metadataPrefix' not in params:

params['metadataPrefix'] = 'dcat_ap'

handleRequest points the request to the appropriate method in

metadata_provider.py

response = oai_server.oai_server.handleRequest(params)

logging.debug(f"OAI-PMH Response: {response}")

Replace date in datestamp by empty string

response = re.sub(b'<datestamp>.*</datestamp>', b'', response)

12

https://sebastien-datalake.cmcc.it/api/v2/oai/blue-tongue?verb=ListRecords

return Response(content=response, media_type="text/xml")

Defining listRecords method, only method used by data.europa harvester

def listRecords(self, metadataPrefix='dcat_ap', from_=None, until=None,

set=None):

logging.debug("Fetching data from API")

if set:

dataset_url = f"{BASE_URL}/{set}"

else:

dataset_url = BASE_URL

Fetch data from the dataset endpoint

data = main.fetch_data(

dataset_url

)

logging.debug(f"Fetched data: {data}")

Convert to RDF graph with proper DCAT-AP fields (URL is being used to

fill the accessURL field)

rdf_graph = convert_to_dcat_ap(data, dataset_url)

Serialize the RDF graph into a string, 'pretty-xml' format makes it

more readable

rdf_string = rdf_graph.serialize(format='pretty-xml')

logging.debug(f"RDF string: {rdf_string}")

Create a header (mandatory for OAI-PMH)

header_element = Element("header")

header = Header(deleted=False, element=header_element, identifier="",

datestamp=datetime.utcnow(), setspec=[])

Create metadata element and fill it with the RDF/XML string

metadata_element = Element("metadata")

metadata = Metadata(element=metadata_element, map={"rdf": rdf_string})

return [(header, metadata, [])], None

This approach allowed for a seamless integration between the existing SEBASTIEN data

infrastructure and the requirements of the European Data Portal. By implementing the OAI-PMH

protocol and converting the metadata to DCAT-AP compliant RDF/XML, we ensured that the

13

SEBASTIEN datasets could be easily harvested and integrated into the broader European data

ecosystem.

The next steps in the process involved testing and validating the converted metadata and the

OAI-PMH server implementation. This included verifying the correctness of the DCAT-AP compliant

metadata, through the portal’s provided SHACL validator (https://data.europa.eu/api/mqa/shacl/),

and ensuring that the server correctly responded to OAI-PMH requests from potential harvesters,

including the European Data Portal itself.

4. SHACL validation results

After implementing the conversion process and the OAI-PMH server to provide DCAT-AP compliant

metadata, the next important step was to verify the compliance of the generated metadata. This

verification process was essential to ensure that the SEBASTIEN datasets' metadata met the

standards required by the European Data Portal.

To validate the DCAT-AP compliance of our metadata, we utilized the European Data Portal's

"DCAT-AP SHACL validation service API". SHACL (Shapes Constraint Language) is a language for

validating RDF graphs against a set of conditions. It's particularly well-suited for validating DCAT-AP

compliance, as it can check both the structure and content of the metadata against the DCAT-AP

specification.

The validation process involved the following steps:

1. Preparation of the metadata: we ensured that our OAI-PMH server was correctly serving

the DCAT-AP compliant metadata in RDF/XML format for each dataset.

2. Setting up the validation requests: we used Insomnia (https://insomnia.rest/), a popular

API testing tool, to prepare and send requests to the European Data Portal's validation

service. This allowed us to easily manage and repeat the validation process for multiple

datasets.

3. Sending requests to the validation endpoint: The European Data Portal provides a specific

endpoint for DCAT-AP SHACL validation:

https://data.europa.eu/api/mqa/shacl/validation/report

4. Analysing the validation results: For each dataset tested, we sent a validation request and

received a response from the API.

The validation process returned good results. For all the SEBASTIEN datasets tested, the European

Data Portal's SHACL validation service returned a positive result, indicating that our metadata was

indeed DCAT-AP compliant.

14

https://data.europa.eu/api/mqa/shacl/validation/report
https://data.europa.eu/api/mqa/shacl/validation/report

The validation service responds with a concise JSON object, which includes a boolean flag

indicating whether the metadata is valid. In our case, this flag was consistently true across all

tested datasets, confirming the success of our implementation.

Here's an example of a typical response received from the validation service:

{

"@id": "_:b0",

"shacl:conforms": {

"@value": "true",

"@type": "http://www.w3.org/2001/XMLSchema#boolean"

},

"@type": "shacl:ValidationReport",

"@context": {

"shacl": "http://www.w3.org/ns/shacl#"

}

}

This successful validation across multiple datasets demonstrates the effectiveness of our approach

in converting the original SEBASTIEN metadata to DCAT-AP compliant format. It confirms that:

1. Our metadata conversion process accurately transforms the original JSON metadata into

DCAT-AP compliant RDF/XML.

2. The implemented OAI-PMH server correctly serves the metadata in a format that meets the

European Data Portal's requirements.

3. All mandatory fields as per the DCAT-AP specification are correctly included and formatted

in our metadata.

These positive results are a crucial milestone in the process of integrating SEBASTIEN datasets with

the European Data Portal. They ensure that our metadata will be correctly interpreted and utilized

when harvested by the portal, enhancing the discoverability and usability of SEBASTIEN data within

the broader European data ecosystem.

The successful SHACL validation also provides confidence in the robustness of our implementation,

indicating that it can handle various datasets consistently while maintaining DCAT-AP compliance.

5. DCAT-AP IT conversion

To reach the requested milestone, it is requested that relevant datasets (including metadata)

resulting from the Action are published on a national portal or catalog that is harvested by the

European Data Portal. Specifically, the Italian open data portal was chosen because the datasets

15

produced are focused on Italy, as the stakeholders identified and the potential audience of users of

the portal.

The implementation for the Italian data portal, AGID, differed from the European Data Portal in a

few key aspects. Unlike the European Data Portal, AGID doesn't require the use of OAI-PMH for

providing metadata repositories. This allowed for a simpler approach in serving the converted RDF

file.

To accommodate AGID's requirements, the existing FastAPI implementation was extended with a

regular HTTP endpoint. This endpoint serves the converted RDF file directly, without the need for

the OAI-PMH protocol, the resulting RDF can be seen in this URL:

https://sebastien-datalake.cmcc.it/api/v2/dcatapit. The simplicity of this approach made it

straightforward to integrate with the existing SEBASTIEN API infrastructure.

For the conversion to the Italian specification, known as DCAT-AP IT, the official documentation

provided by AGID was followed. This documentation, available at

https://www.dati.gov.it/sites/default/files/2020-02/linee-guida-cataloghi-dati-profilo-dcat-ap-it-2.

pdf, outlines the specific requirements for metadata in the Italian context.

The DCAT-AP IT specification has some notable differences compared to the standard DCAT-AP

used by the European Data Portal. It includes more mandatory fields and features a slightly

different structure. These differences can be seen in Table 4, which provides a list of the

mandatory fields.

Class Field Name

dcatapit:Catalog dct:title

dcatapit:Catalog dct:description

dcatapit:Catalog dct:publisher

dcatapit:Catalog dct:modified

dcatapit:Catalog dcat:dataset

dcatapit:Dataset dct:identifier

dcatapit:Dataset dct:title

dcatapit:Dataset dct:description

dcatapit:Dataset dct:modified

dcatapit:Dataset dcat:theme

16

https://sebastien-datalake.cmcc.it/api/v2/dcatapit
https://www.dati.gov.it/sites/default/files/2020-02/linee-guida-cataloghi-dati-profilo-dcat-ap-it-2.pdf
https://www.dati.gov.it/sites/default/files/2020-02/linee-guida-cataloghi-dati-profilo-dcat-ap-it-2.pdf

dcatapit:Dataset dct:rightsholder

dcatapit:Dataset dct:accrualPeriodicity

dcatapit:Dataset dcat:distribution

dcatapit:Distribution dct:format

dcatapit:Distribution dcat:accessURL

dcatapit:Distribution dct:license

Table 4: Mandatory classes and fields in the DCAT-AP IT specification

The conversion process for DCAT-AP IT built upon the existing Python codebase used for the

DCAT-AP conversion. A new function was implemented to take the graph generated for DCAT-AP

and rework it into the DCAT-AP IT format. This approach allowed for efficient reuse of code while

accommodating the specific requirements of the Italian specification, the function can be seen

below.

Function to convert to DCAT-AP IT format

def convert_to_dcat_ap_it(graph, catalog_uri):

g = graph

Bind DCATAPIT namespace to graph

g.bind("dcatapit", DCATAPIT)

Create catalog and add it to the graph

catalog = URIRef(catalog_uri)

g.add((catalog, RDF.type, DCATAPIT.Catalog))

g.add((catalog, DCTERMS.title, Literal("Sebastien Catalog")))

g.add((catalog, DCTERMS.description, Literal("A catalog of Sebastien datasets")))

g.add((catalog, DCTERMS.publisher, URIRef("https://www.cmcc.it/")))

g.add((catalog, DCTERMS.modified, Literal(datetime.now().strftime("%Y-%m-%d"),

datatype=DCTERMS.W3CDTF)))

Find all datasets in graph

for dataset_uri in g.subjects(RDF.type, DCAT.Dataset):

Create dcatapit:Dataset node

dcatapit_dataset_node = BNode()

g.add((dcatapit_dataset_node, RDF.type, DCATAPIT.Dataset))

Wrap existing dataset elements under dcatapit:Dataset

for s, p, o in g.triples((dataset_uri, None, None)):

if p != RDF.type:

g.remove((dataset_uri, p, o))

g.add((dcatapit_dataset_node, p, o))

Remove original dcat:Dataset node

17

g.remove((dataset_uri, RDF.type, DCAT.Dataset))

Add new dcat:dataset relation to the catalog, pointing to the

dcatapit:Dataset

g.add((catalog, DCAT.dataset, dcatapit_dataset_node))

Add mandatory fields with placeholder values

g.add((dcatapit_dataset_node, DCAT.theme,

URIRef("http://publications.europa.eu/resource/authority/data-theme/AGRI")))

g.add((dcatapit_dataset_node, DCTERMS.rightsHolder,

URIRef("https://www.cmcc.it/")))

Add accrualPeriodicity based on dataset name

dataset_name = dataset_uri.split("/")[-1]

if dataset_name in ACCRUAL_PERIODICITY:

g.add((dcatapit_dataset_node, DCTERMS.accrualPeriodicity,

URIRef(f"http://publications.europa.eu/resource/authority/frequency/{ACCRUAL_PERIODIC

ITY[dataset_name]}")))

else:

g.add((dcatapit_dataset_node, DCTERMS.accrualPeriodicity,

URIRef("http://publications.europa.eu/resource/authority/frequency/UNKNOWN")))

Change Distribution namespace to DCATAPIT

for s, p, o in g.triples((dcatapit_dataset_node, DCAT.distribution, None)):

g.remove((s, p, o))

g.add((s, DCATAPIT.distribution, o))

g.add((o, RDF.type, DCATAPIT.Distribution))

return g

One key difference in the implementation for AGID is that the metadata is provided as a

comprehensive list containing information for all datasets, rather than individual metadata files for

each dataset. This approach aligns with AGID's harvesting preferences and allows for more

efficient bulk processing of the SEBASTIEN metadata.

The implementation of the DCAT-AP IT conversion and the new HTTP endpoint ensures that the

SEBASTIEN datasets can be effectively harvested and integrated into the Italian national data

portal. This approach allows for the metadata to be provided as a comprehensive list containing

information for all datasets, which aligns with AGID's harvesting preferences. By extending the

existing codebase and adapting it to the DCAT-AP IT requirements, we were able to efficiently

reuse code while meeting the specific needs of the Italian specification. This implementation

expands the visibility and accessibility of the SEBASTIEN data within the Italian open data

ecosystem, furthering the project's goal of wide data dissemination.

18

6. Conclusions

In the context of the SEBASTIEN project, a series of datasets, indicators and indices were produced

in order to contribute to making the livestock sector more environmentally and socio-economically

sustainable.

The datasets produced and exposed (see also Milestone M7 - Report on released database of

sectoral indicators/indices) were exposed by the developed datalake to ensure easy use by users

and stakeholders through the SEBASTIEN web service portal

(https://dds.sebastien-project.eu/app/catalog). In addition, these datasets were i) made compliant

with the specifications of the European data portal to ensure MQA compliance and ii) exposed

through the necessary APIs to ensure compliance with the DCAT-AP IT specifications to facilitate

onboarding on the Italian AGID Open Data Portal.

References
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., ... & Mons, B. (2016).
The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3(1), 1-9.

19

https://dds.sebastien-project.eu/app/catalog

