
D6.2 - Document describing Portal’s architecture

Deliverable Lead CINECA

Deliverable due date 2023/04/30

Status FINAL

Version V2.0

Project SEBASTIEN

Agreement: INEA/CEF/ICT/A2020/2373580Action: 2020-IT-IA-0234

DOCUMENT INFORMATION

Title D6.2 - Document describing Portal’s architecture

Agreement INEA/CEF/ICT/A2020/2373580

Action 2020-IT-IA-0234

Creator Cineca

Deliverable Description Document describing Portal’s architecture

Contributors Giuseppe Trotta (Cineca), Cinzia Caroli (Cineca)

Requested deadline M16

Reviewer Alessandro D’Anca (CMCC), Paola Nassisi (CMCC)

2

Table of contents

1. Executive summary... 4

2. Data and Services Exploitation Portal..5

2.1. Web Portal Architecture... 5

2.2. Web Portal Architecture Components..7

2.2.1. Load Balancer..7

2.2.2. Web App Servers...8

2.2.3. Databases..8

2.2.4. Caching Service... 8

2.2.5. Job Queue... 8

2.2.6. Services... 8

2.2.7. Data Lake...9

2.3. Data Lake Connection...9

2.4. Technology stack...11

3. Services Wireframes..13

3.1. Service 1: Coping with environmental stressors for breeds... 14

3.1.1. Service 1A: Estimation of production loss as a function of climatic variables.......................... 14

3.1.2. Service 1B: Adaptability of species/breeds to stress due to climate change............................ 16

3.2. Service 2: Intensive farming risk management under climate extremes..17

3.3. Service 3: Extensive farming management and feed availability..18

3.4. Service 4: Livestock farming under risks from combined abiotic and biotic factors...........................19

3.5. Dashboard for sensors on animals... 20

4. Data Catalog Wireframes...21

5. Conclusions..23

3

1. Executive summary

The aim of the document is to describe the architecture of the web portal for data and services

exploitation and to show the macro components it is made up of as well as the interactions

between them. This work is the result of the requirement analysis of the application services

coming from a continuous interaction with partners and stakeholders to identify the end-user

needs and the way in which the data must be accessed and visualized. The web portal will be

created “on top” of the services prediction models and will query and/or retrieve the forecast

indicators periodically produced. To provide unified access to datasets and services, the web portal

needs tight integration with the SEBASTIEN data lake. For this reason, this document has strong

dependencies on what is described in deliverable D3.1 - “Report on HIGHLANDER data platform

extension implementing SEBASTIEN data lake”.

This document is divided into two parts: a first part which describes the architecture up to the

technological solutions to be adopted; the second part will instead deal with a UX/UI web design

where it is shown how the portal will have to present the outcomes to the end user.

4

2. Data and Services Exploitation Portal

The Sebastien Data and Services Exploitation Portal aims to be a web portal as the main access

point to the data and downstream applications envisaged in the project.

Leveraging the work done in the past years, the SEBASTIEN web portal adapts and integrates the

new services in the main components of the HIGHLANDER project architecture.

Figure 1 summarizes the scope of the project and provides a high-level architectural overview. The

data coming from different sources and produced by predictive models feed the data lake which

has the task of organizing them and providing a first level of access. The actual access level will be

implemented through restful APIs that will expose the data and the services functionalities to the

portal, the SEBASTIEN mobile app and other downstream applications.. The SEBASTIEN web portal

implements the UI components for data navigation and interaction with the various downstream

services.

5

Figure 1 – Data and Service Exploitation Portal Overview

2.1. Web Portal Architecture

Before going into the details of the components of the web portal, let's introduce the basic

characteristics of a web application and describe its well-established and commonly used

architecture. When thinking of a web portal, we are not limited to front-end components that

usually run in a client-side browser, but it also involves components that execute business logic

typically deployed on a remote server. In SEBASTIEN those logics can be identified in the

on-demand calculation of prediction indicators as well as in the user application data management

tools such as data access request management, search data, user profile, user stables and features

etc.

The web application architecture describes the interactions between application components,

middleware systems, user interfaces and databases. Once a user opens a webpage and asks for

some data, the server sends back specific data to the browser as a response to the user’s request.

The following Figure 2 shows such an interaction and identifies the main high-level components.

6

Figure 2 – Web Portal Architecture

Typically, there are two different codes running side-by-side:

● Client-side Code - The code that is in the browser and responds to some user input

● Server-side Code - The code that is on the server and responds to the HTTP requests

The client components will be developed using traditional web technologies such as HTML and CSS

(more details will be presented later in the document). The client component is a representation of

a web application functionality that the end-user interacts with. Server components instead

implement the actual business logic that deals with data or asset contents stored in a data system

such as a relational database or a file system.

7

2.2. Web Portal Architecture Components

After presenting an overview of a typical web application, a scheme of the specific SEBASTIEN

user-server process is shown in Figure 3.

Figure 3 – User-Server Process

The scope of each single component is explained in the following sub-paragraphs.

2.2.1. Load Balancer

Load Balancer primarily deals with horizontal scaling. By directing incoming requests to one of the

multiple servers, the load balancer sends an answer to a user. Usually, web application servers

exist in the form of multiple copies mirroring each other. Hence, any server processes requests in

the same manner, and the load balancer distributes tasks among them so they will not be

overcharged.

8

2.2.2. Web App Servers

This component processes a user’s request and sends data (e.g., JSON) back to a browser. To

perform this task, it usually refers to back-end infrastructures such as database, cache server, job

queue, and others. Besides, at least two servers, connected to the load balancer, manage to

process the user’s requests.

2.2.3. Databases

The database provides the tools to organize, add, search, update, delete data. In some other cases,

web application servers directly interact with the job servers.

2.2.4. Caching Service

Caching service provides storage for data, which allows storing and searching data. Whenever a

user gets some information from the server, the results of this operation go to cache. So, future

requests return faster. In one word, caching allows you to refer to the previous result to make a

computation much faster.

2.2.5. Job Queue

A job queue consists of two components: the job queue itself and servers. These servers process

jobs in the queue. It happens that most of the web servers need to operate a vast number of jobs

that are not of primary importance. Therefore, when a job needs to be fulfilled, it goes to the job

queue and is operated due to a schedule.

2.2.6. Services

When a web application reaches a certain level of complexity, services are created in the form of

separate apps. They are not visible among other web application components, but the web

application and other services interact with them.

2.2.7. Data Lake

Large amounts of data cannot always be stored locally. Very often the data comes from different

sources, and it is not appropriate to transfer them all because they would occupy large volumes.

The data lake provides transparent access to a multitude of heterogeneous data and allows local

transfer only if required.

9

2.3. Data Lake Connection

In the design presented so far it is now clear that we need a middleware between the client

applications and the data repository. The goal is to expose the functionality of different services

"on top" of those provided directly by the data lake. The APIs will be designed in such a way as to

be easily extensible to allow easy integration of new services and allow access to new future

datasets. Figure 4 below shows this integration.

Figure 4 – Data Lake integration

Furthermore, direct front-end access with the data lake APIs could be possible or cannot be

excluded. It could be necessary if we want to expose the data also through OGC1 compliant

services such as the web map service (WMS) or web feature service (WFS). In this case the

application will access the geographical maps pointing directly to the data lake. The same could

1 https://www.ogc.org/

10

also happen for the realization of the catalog view of the project datasets with the possibility of

searching and filtering.

For the sake of clarity, at the time of writing this document, a first prototype of the connection

between the data lake and the portal back-end has already been created: it implements the

needed data exchange mechanism and creates a first version of the Service 2 "Intensive farming

risk management under climate extremes". The following figure shows how the UI component

interacts with the Service API to evaluate the THI of a specific geographical location selected by the

user on a map, and how the data lake provides the data in JSON format then presented to the user

in the form of a table.

Figure 5 – Interaction between front-end and back-end to implement the Sebastien Service 2

2.4. Technology stack

To conclude this part on the web portal architecture we briefly describe the technologies chosen to

implement the components shown up to now. These choices are also a consequence of the

requirement to reuse what has already been done in the HIGHLANDER project to leverage its

results. The solutions are exclusively open source and easy to use, always supported by a large

community behind them, thus ensuring a certain stability and robustness. Figure 6 shows the main

11

technological solutions for each of the macro components previously introduced; each box

represents the “container” within which the applications are executed as explained below.

Figure 6 – Technology stack

Proxy

User requests pass through a Nginx2 proxy server. It sends the request to a specified proxied

server, fetches the response, and sends it back to the client. At the moment, the only server

behind the scenes is the backend, while the frontend is served as assets and pre-bundled

packages. Nginx also implements a secure HTTP over TLS connection and a set of security policies

in front of the other services.

Front-end

Implements the client-side components using technologies for the web. The front-end is built up

using Angular3: a platform and framework for building single-page client applications. Angular

components and services are written in Typescript while template files in HTML and styles with

Bootstrap4 and SCSS (a CSS syntax extension).

Back-end

The HTTP APIs, written in Python5 by using the Flask6 framework, are used through the web

interface but are also directly accessible by users to implement programmatic access to the data.

6 https://flask.palletsprojects.com

5 https://www.python.org/

4 https://getbootstrap.com/

3 https://angular.io/

2 https://www.nginx.com/

12

All endpoints are described as OpenAPI specifications by adopting the Swagger7 framework. To

implement data-intensive operations the endpoints dispatch the requests to a task queue based

on Redis to allow Celery8, an asynchronous task manager based on distributed message passing, to

process the request.

Message Broker

Message Broker is what makes asynchronous task management possible. Redis9 is a super fast K/V

store, making the fetching of the results of a task call very efficient. It works well for rapid

transport of small messages.

Database

Some application data may require to be stored in a PostgreSQL10 database. At the moment the

persistent data model is limited and includes models for managing registered users, as well as roles

and groups, to support access control functions. The domain model also allows saving user

requests for access and data download by tracking information such as request status; start and

end data; filtering details and so on. In addition, application services may require the storage of

additional data to facilitate their use. In particular, registered users will be able to save and manage

their own stables by specifying their position via geographical coordinates. The data model

described here is represented in the following diagram:

10 https://www.postgresql.org/

9 https://redis.io/

8 https://docs.celeryq.dev

7 https://swagger.io/

13

Containerization

To make these services more easily manageable and deployable a container-based solution has

been adopted. Containerization, using Docker11, allows to package the application software with all

of its dependencies into a standardized unit and creates an environment that is isolated from the

rest of the applications and can be run anywhere. This allows us to create the components as

building blocks of a larger system and makes services easier to manage and maintain. Compose

instead allows to define and run services together in the multi-container environment.

3. Services Wireframes

The following wireframes describe what the web interface that will allow end users to interact with

services on the Sebastien portal should look like. They are the result of UX/UI design which had as

11 https://www.docker.com/

14

its requirements the output of the analysis conducted with partners and stakeholders to identify

the needs of end users. Milestone 4 “Report on data synthesis methodologies” extensively reports,

instead, the relationship between the input data stored in the data lake and how the ML models

interact with them in order to carry out the needed computations to reach the final output. The

results are then represented in the web interface upon user requests.

3.1. Service 1: Coping with environmental stressors for breeds

Service 1 has been split into two separate services, for simplicity designated 1A and 1B.

3.1.1. Service 1A: Estimation of production loss as a function of climatic

variables

Exploiting climate data, the service will provide information on the risk of production loss in terms

of milk quantity, proteins and fat, due to heat stress in dairy cattle.

After choosing the phenotype and the breeding method, users will see the assessment of the short

(2 days) and long (until 2050) term risk increase on the map.

By selecting a location on the map, the service will open a new section on the page to show the

area around the selected location in higher spatial resolution.

The required input data of the service and its output are summarized in Table 1.

INPUT

User:

Phenotype: amount of milk, amount of fat, amount of protein

Breeding method: in the stable, outdoors

Period: short term (2 days), long term (2050)

Data lake: weather forecast and climate data

OUTPUT Map of the estimation of production loss

Table 1 - Input and output of the Service 1A

Figure 7 shows the wireframe of the web interface for Service 1A on the Sebastien Portal.

15

Figure 7 - Wireframe of the Service 1A

16

3.1.2. Service 1B: Adaptability of species/breeds to stress due to climate change

The service will provide information on the adaptability of species and breeds to stress due to

climate change.

The service will open by presenting a map of Italy on which the estimated THI values are shown.

Users will be able to select a different species or THI and consequently the map will update with

the corresponding THI values.

By selecting a location on the map, the service will open a new section on the page to show which

breeds are compatible with the THI value in that location and which are not.

The required input data of the service and its output are summarized in Table 2.

INPUT

User:

Species: bovine

THI: in the stable, outdoors

Location over Italy

Data lake: climate data

OUTPUT Breeds compatible with the THI foreseen for the future

Table 2 - Input and output of the Service 1B

Figure 8 shows the wireframe of the web interface for Service 1B on the Sebastien Portal.

17

Figure 8 - Wireframe of the Service 1B

3.2. Service 2: Intensive farming risk management under climate

extremes

The service will provide the forecast of the external temperature and humidity, of the THI

(Temperature-Humidity Index) in stables and the associated stress value, upon the provision of the

geographical position.

The required input data of the service and its output are summarized in Table 3.

INPUT
User: stable position (latitude, longitude)

Data lake: weather forecasts, climate datasets

OUTPUT

External temperature and humidity forecast, THI prediction inside

the stable and related stress value, for the next 2 days at hourly

resolution or related to a long term period (2050)

Table 3 - Input and output of the Service 2

Figure 9 shows a screenshot of the web interface for Service 2 which has already been

implemented on the Sebastien Portal.

18

Figure 9 - Screenshot of the web interface for Service 2

3.3. Service 3: Extensive farming management and feed availability

Exploiting satellite data, the service will evaluate the zootechnical load of the pasture that the

users will delimit using the map widget provided by the web interface.

The required input data of the service and its output are summarized in Table 4.

INPUT

User: pasture area

User: type of animals (bovine, ovine)

User: number of animals or days (optional)

Data Lake: satellite data

OUTPUT

Zootechnical load

Evaluate the maximum number of animals per number of days

for a pasture

Alert on pasture availability

Evaluate the number of days for which pasture is available,

based on the zootechnical load

Table 4 - Input and output of the Service 3

Figure 10 shows the wireframe of the web interface for Service 3 on the Sebastien Portal.

19

Figure 10 - Wireframe of the Service 3

3.4. Service 4: Livestock farming under risks from combined abiotic

and biotic factors

Long term (up to 2050) risk maps of the spread of diseases will be produced on the basis of

epidemiological, ecological and climatic data on some regions of Italy and, for certain diseases, on

the whole Italian territory.

The required input data of the service and its output are summarized in Table 5.

INPUT

User: species (bovine, ovine), disease (mastitis,

blue tongue)

Data lake: climate data

OUTPUT Long term risk maps of the spread of diseases

Table 5 - Input and output of the Service 4

Figure 11 shows the wireframe of the web interface for Service 4 on the Sebastien Portal.

20

Figure 11 - Wireframe of the Service 4

3.5. Dashboard for sensors on animals

As part of the Sebastien project, Nature4.0 developed animal sensors (AnimalTalker) that are being

used to collect physiological parameters in real-time related to a group of animals, in barns but

also in pasture. Animal sensors can collect the information needed for assessing the animal welfare

and the physiological stress and make them available remotely.

A dashboard, developed in the Sebastien Portal, allows the user to identify on a map the last

position of each IoT animal sensor owned, to select one of them and to display some information

and statistics related to the last 24 hours (i.e. animal temperature, environmental temperature and

humidity, animal movements, heart rate, etc.).

Figure 11 shows the wireframe of the web interface for the dashboard with animal sensors data on

the Sebastien Portal.

21

Figure 11 - Animal sensor dashboard wireframe

4. Data Catalog Wireframes

In addition to the services presented in the previous paragraphs, the Sebastien portal provides

access to a catalog of data and indicators. Users are able to perform extraction queries on these

datasets and download the resulting data to their local computers.

The following wireframes describe the web interface that allows end users to access the catalog on

the Sebastien portal.

First, there will be a page with the list of all datasets available in the catalog, with a brief

description for each dataset (Figure 12).

22

Figure 12 - List of the datasets of the catalog

From the list of datasets, clicking on the title of a dataset, users is taken to the page with the
details of the chosen dataset (Figure 13).

Figure 13 - Detail page of a dataset

From the dataset detail page, clicking the "Get Data" button a dialog window will open from which
the user can build a query and then submit it to the system (Figure 14).

23

Figure 14 - Form to create the query

The result of the query is available for download by users in the "My requests" feature. On the "My
requests" page, users can view the queries they submitted to the system and download the results
(Figure 15).

Figure 15 - List of the queries submitted by the user

5. Conclusions

In this document, the architectural design of the data and services exploitation portal has been

provided, identifying the fundamental components that will be implemented or integrated. In

particular, the connectivity with the data lake has been shown. The solutions described are

inherited from the HIGHLANDERhlander platform as expected with the aim of reusing what has

already been done.

A first version of the SEBASTIEN Open Data and Services Exploitation portal has already been

released and is available at the following link:

24

https://dds.sebastien-project.eu

However, since the interaction with the stakeholders will continue until the end of the Action, an

agile approach will be taken with a progressive refinement of what has been designed and

described here.

25

https://dds.sebastien-project.eu

